Neutral amino acid transport mediated by ortholog of imino acid transporter SIT1/SLC6A20 in opossum kidney cells.

نویسندگان

  • Zorica Ristic
  • Simone M R Camargo
  • Elisa Romeo
  • Susana Bodoy
  • Joan Bertran
  • Manuel Palacin
  • Victoria Makrides
  • Esther M Furrer
  • François Verrey
چکیده

Most neutral l-amino acid acids are transported actively across the luminal brush-border membrane of small intestine and kidney proximal tubule epithelial cells by a Na(+) cotransport system named B(0) that has been recently molecularly identified (B(0)AT1, SLC6A19). We show here that the opossum kidney-derived cell line OK also displays a Na(+)-dependent B(0)-type neutral l-amino acid transport, although with a slightly differing substrate selectivity. We tested the hypothesis that one of the two B(0)AT1-related transporters, SLC6A18 (ortholog of orphan transporter XT2) or SLC6A20 (ortholog of the recently identified mammalian imino acid transporter SIT1), mediates this transport. Anti-sense RNA to OK SIT1 (oSIT1) but not to OK XT2 (oXT2) inhibited Na(+)-dependent neutral amino acid transport induced by OK mRNA injected in Xenopus laevis oocytes. Furthermore, inhibition of oSIT1 gene expression in OK cells by transfection of siRNA and expression of shRNA selectively reduced the Na(+)-dependent uptake of neutral l-amino acids. Finally, expression of OK cell oSIT1 cRNA in X. laevis oocytes induced besides the transport of the l-imino acid l-Pro also that of neutral l-amino acids. Taken together, the data indicate that in OK cells SIT1 (SLC6A20) is not only an apical imino acid transporter but also plays a major role as Na(+)-dependent neutral l-amino acid transporter. A similar double role could be envisaged for SIT1 in mammalian kidney proximal tubule and small intestine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Luminal kidney and intestine SLC6 amino acid transporters of B0AT-cluster and their tissue distribution in Mus musculus.

The B degrees transport system mediates the Na(+)-driven uptake of a broad range of neutral amino acids into epithelial cells of small intestine and kidney proximal tubule. A corresponding transporter was identified in 2004 (A. Broer, K. Klingel, S. Kowalczuk, J. E. Rasko, J. Cavanaugh, and S. Broer. J Biol Chem 279: 24467-24476, 2004) within the SLC6 family and named B degrees AT1 (SLC6A19). A...

متن کامل

Myosin 1b Regulates Amino Acid Transport by Associating Transporters with the Apical Plasma Membrane of Kidney Cells

Amino acid transporters (AATers) in the brush border of the apical plasma membrane (APM) of renal proximal tubule (PT) cells mediate amino acid transport (AAT). We found that the membrane-associated class I myosin myosin 1b (Myo1b) localized at the apical brush border membrane of PTs. In opossum kidney (OK) 3B/2 epithelial cells, which are derived from PTs, expressed rat Myo1b-GFP colocalized i...

متن کامل

Luminal kidney and intestine SLC6 amino acid transporters of BAT-cluster and their tissue distribution in Mus musculus

Romeo, Elisa, Mital H. Dave, Desa Bacic, Zorica Ristic, Simone M. R. Camargo, Johannes Loffing, Carsten A. Wagner, and François Verrey. Luminal kidney and intestine SLC6 amino acid transporters of BAT-cluster and their tissue distribution in Mus musculus. Am J Physiol Renal Physiol 290: F376–F383, 2006. First published September 20, 2005; doi:10.1152/ajprenal.00286.2005.— The B transport system...

متن کامل

Defective intestinal amino acid absorption in Ace2 null mice.

Mutations in the main intestinal and kidney luminal neutral amino acid transporter B(0)AT1 (Slc6a19) lead to Hartnup disorder, a condition that is characterized by neutral aminoaciduria and in some cases pellagra-like symptoms. These latter symptoms caused by low-niacin are thought to result from defective intestinal absorption of its precursor L-tryptophan. Since Ace2 is necessary for intestin...

متن کامل

Iminoglycinuria and hyperglycinuria are discrete human phenotypes resulting from complex mutations in proline and glycine transporters.

Iminoglycinuria (IG) is an autosomal recessive abnormality of renal transport of glycine and the imino acids proline and hydroxyproline, but the specific genetic defect(s) have not been determined. Similarly, although the related disorder hyperglycinuria (HG) without iminoaciduria has been attributed to heterozygosity of a putative defective glycine, proline, and hydroxyproline transporter, con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 290 4  شماره 

صفحات  -

تاریخ انتشار 2006